find the solution of tan 15/2
Answers
value of tan(15/2)° is √6 - √3 + √2 - 2
we have to find tan(15/2)°
using formula, tanθ = √{(1 - cos2θ)/(1 + cos2θ)}
Let θ = 15/2° ⇒2θ = 15°
then, tan(15/2)° = √{(1 - cos15°)/(1 + cos15°)}
we know cos15° = cos(45 - 30)
= cos45°.cos30° + sin45°.sin30°
= √3/2√2√2 + 1/2√2
= (√3 + 1)/2√2
tan(15/2)° = √[{1 - (√3 + 1)/2√2}/{1 + (√3 + 1)/2√2}]
= √{(2√2 - √3 - 1)/(2√2 + √3 + 1)}
after rationalisation we get,
= √{(2√2)² - (√3 + 1)²/(2√2 + √3 + 1)²}
= √{(8 - 4 - 2√3)/(2√2 + √3 + 1)²}
= √{(√3 - 1)²/(2√2 + √3 + 1)²}
= (√3 - 1)/(2√2 + √3 + 1)
again rationalisation we get,
= √6 - √3 + √2 - 2
Answer:
Step-by-step explanation:
value of tan(15/2)° is √6 - √3 + √2 - 2
we have to find tan(15/2)°
using formula, tanθ = √{(1 - cos2θ)/(1 + cos2θ)}
Let θ = 15/2° ⇒2θ = 15°
then, tan(15/2)° = √{(1 - cos15°)/(1 + cos15°)}
we know cos15° = cos(45 - 30)
= cos45°.cos30° + sin45°.sin30°
= √3/2√2√2 + 1/2√2
= (√3 + 1)/2√2
tan(15/2)° = √[{1 - (√3 + 1)/2√2}/{1 + (√3 + 1)/2√2}]
= √{(2√2 - √3 - 1)/(2√2 + √3 + 1)}
after rationalisation we get,
= √{(2√2)² - (√3 + 1)²/(2√2 + √3 + 1)²}
= √{(8 - 4 - 2√3)/(2√2 + √3 + 1)²}
= √{(√3 - 1)²/(2√2 + √3 + 1)²}
= (√3 - 1)/(2√2 + √3 + 1)
again rationalisation we get,
= √6 - √3 + √2 - 2