Math, asked by imnilabhra, 15 days ago

Find the solution of the attached file.
I need urgent​

Attachments:

Answers

Answered by Anonymous
2

Answer:

 \dfrac{1}{x}  -  \dfrac{1}{x + b}  =  \dfrac{1}{a}  - \dfrac{1}{a + b}  \\  \\  \dfrac{x + b - x}{x(x + b)}  =  \dfrac{a + b - a}{a(a + b)}  \\  \\  \dfrac{b}{ {x}^{2}  + bx}  =  \dfrac{b}{ {a}^{2}  + ab}  \\  \\  \frac{1}{ {x}^{2} + bx }  =  \frac{1}{ {a}^{2} + ab }  \\  \\  {a}^{2}  + ab =  {x}^{2}  + bx \\  \\  {a}^{2}  + ab  -  {x}^{2}   -  bx = 0 \\  \\   {x}^{2} -  {a}^{2}  + bx   -  ab  = 0 \\  \\ (x + a)(x - a) + b(x - a) = 0 \\  \\ (x - a) \{x + a + b) \}

Hope it helps

Similar questions