Math, asked by thimmarayi1963, 4 months ago

Find the solution of the following pair of linear
equations by the graphical method.
2x+y=10 , x+y=6​

Answers

Answered by mathdude500
48

\large\underline\purple{\bold{Solution :-  }}

Consider Line (1)

\rm :\implies\: \boxed{ \pink{ \bf \: 2x \:  + y \:  =  \tt \: 10}}

❶ Substituting 'x = 0' in the given equation, we get

\rm :\implies\:2 \times 0 + y = 10

\rm :\implies\:y  \: =  \: 10

❷ Substituting 'y = 0' in the given equation, we get

\rm :\implies\:2x + 0 = 10

\rm :\implies\:2x = 10

\rm :\implies\:x = 5

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 10 \\ \\ \sf 5 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 10) & (5 , 0)

➢ See the attachment. Red line represents 2x + y = 10

Now,

Consider Line (2)

\rm :\implies\: \boxed{ \pink{ \bf \: x \: +  \: y \:   =  \tt \: 6}}

❶ Substituting 'x = 0' in the given equation, we get

\rm :\implies\:0 + y = 6

\rm :\implies\:y \:  =  \: 6

❷ Substituting 'y = 0' in the given equation, we get

\rm :\implies\:x + 0 = 6

\rm :\implies\:x \:  =  \: 6

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 6 \\ \\ \sf 6 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 6) & (6 , 0)

➢ See the attachment. Purple line represents x + y = 6.

\rm :\implies\: \boxed{ \pink{ \bf \: Hence \: the \: solution \: is \:  =  \tt \: (4, 2)}}

So,

\rm :\implies\: \boxed{ \green{ \bf \: x = 4 \:  \: and \:  \:  y \: =   \: 2\: }}

Attachments:
Answered by pandurangilager
25

Step-by-step explanation:

this much only solve using graph method

Attachments:
Similar questions