Math, asked by kimberlyxo, 2 months ago

Find the solution of the pair of equations: x/10+y/5=1 and x/8+y/6=15. hence, find a, if y= ax+5​

Answers

Answered by BrainlyTwinklingstar
3

Answer

\sf \dashrightarrow \dfrac{x}{10} + \dfrac{y}{5} = 1 \: \: --- (i)

\sf \dashrightarrow \dfrac{x}{8} + \dfrac{y}{6} = 15 \: \: --- (ii)

By first equation,

\sf \dashrightarrow \dfrac{x}{10} + \dfrac{y}{5} = 1

\sf \dashrightarrow \dfrac{x + 2y}{10} = 1

\sf \dashrightarrow x + 2y = 10 \: \: --- (iii)

By second equation,

\sf \dashrightarrow \dfrac{x}{8} + \dfrac{y}{6} = 15

\sf \dashrightarrow \dfrac{3x + 4y}{24} = 15

\sf \dashrightarrow 3x + 4y = 360 \: \: --- (iv)

By third equation,

\sf \dashrightarrow x + 2y = 10

\sf \dashrightarrow x = 10 - 2y

Now, let's find the value of y by fourth equation.

\sf \dashrightarrow 3x + 4y = 360

\sf \dashrightarrow 3 (10 - 2y) + 4y = 360

\sf \dashrightarrow 30 - 6y + 4y = 360

\sf \dashrightarrow 30 - 2y = 360

\sf \dashrightarrow -2y = 360 - 30

\sf \dashrightarrow -2y = 330

\sf \dashrightarrow y = \dfrac{330}{-2}

\sf \dashrightarrow y = -165

Now, let's find the value of x by third equation.

\sf \dashrightarrow x + 2y = 10

\sf \dashrightarrow x + 2(-165) = 10

\sf \dashrightarrow x + (-330) = 10

\sf \dashrightarrow x - 330 = 10

\sf \dashrightarrow x = 10 + 330

\sf \dashrightarrow x = 340

Now, let's find the value of a.

\sf \dashrightarrow y = ax + 5

\sf \dashrightarrow -165 = a(340) + 5

\sf \dashrightarrow a(330) + 5 = -165

\sf \dashrightarrow a(330) = -165 - 5

\sf \dashrightarrow a(330) = -170

\sf \dashrightarrow a = \dfrac{-170}{330}

\sf \dashrightarrow a = \dfrac{-17}{33}

Hence, the value of a is \sf \dfrac{-17}{33}.

Similar questions