Math, asked by aziztofan547, 1 month ago

Find the solution set by using the method of cross multiplication. 5x + y - 56 = 0 x + 18y - 29 = 0​

Answers

Answered by misscutie94
6

Answer:

\large\fcolorbox{red}{green}{Solution :-}

5x + y - 56 = 0

x + 18y - 29 = 0

By cross multiplication rule, we get

\dfrac{x}{1(- 29) - 18(- 56)} = \dfrac{y}{1(- 56) - 5(- 29)} = \dfrac{1}{5(18) - 1(1)}

\dfrac{x}{- 29 + 1008} = \dfrac{y}{- 56 + 145} = \dfrac{1}{90 - 1}

\dfrac{x}{979} = \dfrac{y}{89} = \dfrac{1}{89}

\Rightarrow \dfrac{x}{979} = \dfrac{1}{89} \:and\: \dfrac{y}{89} = \dfrac{1}{89}

\Rightarrow  x\: = \cancel{\dfrac{979}{89}} \:and\: y\: = \cancel{\dfrac{89}{89}}

\Rightarrow  x = 11 \:and\: y\: = 1

\therefore  The\: value\: of\: x\: = 11, y\: = 1 \:is\: the\: solution\: of\: the\: system\: of\: the\: given\: equations\:.

Answered by Rajeshwari8025
0

Step-by-step explanation:

Find the solution set by using the method of cross multiplication. 5x + y - 56 = 0 x + 18y - 29 = 0

Similar questions
Math, 27 days ago