Math, asked by swastiksk123, 1 day ago

find the solution
tan^{ - 1}  - sec^{ - 1} ( - 2)

Answers

Answered by mrigankadabnath
0

Answer:

Solution

sec−1(−x)=π−sec−1xsec-1(-x)=π-sec-1x

sec−1(−2)=π−sec−12sec-1(-2)=π-sec-12

and the principal value of sec−12 is π3sec-12 is π3

∴Sec−1(−2)=π−π/3∴Sec-1(-2)=π-π/3

=2π3=2π3

Also, tan−1(−13–√)=−tan−1(13–√),(∵tan−1(−x)=−tan−1x)tan-1(-13)=-tan-1(13),(∵tan-1(-x)=-tan-1x)

=−π6=-π6

∴sec−1(−2)+tan−1(−13–√)∴sec-1(-2)+tan-1(-13)

=2π3

Similar questions