Math, asked by Vamprixussa, 11 months ago

Find the solutions: class 11
2cos^{2} x - 5cosx + 2 = 0

Answers

Answered by ITzNoBitA
65

Here Is Your Ans ⤵

--------------

Ans :-

➡General Solution :-

x = 2n\pi \: ± \:  \frac{\pi}{3}

➡Principal Solution :-

x =  \frac{\pi}{3} ,  \frac{ - \pi}{3}, \frac{7\pi}{3} ,  \frac{5\pi}{3} ............

Given :-

2 \: cos^{2} x - 5 \: cosx + 2 = 0

To Find :-

➡General Solution And Principal Solution Of Given Equation

Solution :-

 \implies \:  2 \: cos^{2} x - 5 \: cosx + 2 = 0 \\  \implies \: 2 \: cos^{2} x - 4 \: cosx  - cosx+ 2 = 0  \\ \implies \: 2 \: cosx \: (  \: cosx \:  - 2 \: ) \:  - 1 \: ( \: cosx \:  - 2 \: ) = 0 \\ \implies \: ( \: 2 \: cosx - 1 \: )( \: cosx - 2 \: ) = 0

----

for \:    \:  \: 2 \: cosx \:  - 1 = 0 \\  \implies \: cosx =  \frac{1}{2}  \\ \implies \: cosx = cos \frac{\pi}{3}  \\  \implies \: x = 2n\pi \: ± \:  \frac{\pi}{3}

Principal Solution :-

 \implies \: x =  \frac{\pi}{3} ,  \frac{ - \pi}{3}, \frac{7\pi}{3} ,  \frac{5\pi}{3} ............ \:

----

for \: \:  \:  cosx - 2 = 0 \\  \implies \: cos x = 2 \:  \: ( \: it \: is \: not \: possible \: )

-------

  <marquee > follow me

Answered by ITzBrainlyGuy
1

Step-by-step explanation:

cosx=2

hope it helps you please mark it as brainliest

Similar questions