Physics, asked by shree133, 11 months ago

Find the speed of light of wavelength lambda =780nm (in air) in a medium of refractive index mu=1.55. (b) What is the wavelength of this light in the given medium ?

Answers

Answered by AbdJr10
0

Answer:

780/1.55nm

Explanation:

hope the answer will help you

Answered by roshinik1219
0

Given that,

Refractive index of medium ( \mu_m) = 1.55

Wavelength of light (\lambda_l) = 780nm

Speed of light when in vacuum (c) = 3\times 10^8 m/s

Refractive index of air =  \mu_a

(A)

        We have to find out the speed of light in a medium

        The refractive index formula is given by

                                  \mu = \frac{c}{v}

Here

            \mu = refractive index of the medium

            c = speed of light when in vacuum

            v = speed of light when in medium

So,

               v = \frac{c}{\mu_m} \\   = \frac{3\times10^8}{1.55} \\   = 1.94 \times 10^8 m/s

Thus,  Speed of light when in medium = 1.94\times 10^8 m/s

(B)

Now we have to find out the wavelength of light in given medium.

We know that

                      v= f \times \lambda

                       v \propto \lambda

or

                       v \propto \frac{1}{\mu}

                       \mu \propto \frac{1}{v \lambda}

                       \frac{\mu_a}{\mu_m} = \frac{\lambda_2}{\lambda_1}                      [\mu_a = 1]

                      \lambda_2 = \lambda_1 (\frac{\mu_a}{\mu_m} )

                      \lambda_2 = \frac{1\times 780nm}{1.55}

                      \lambda_2 = 503nm

Thus, Wavelength of light in given medium (\lambda_2) = 503nm

Similar questions