Find the sqare root of i (complex numbers)
Answers
Answered by
1
X² = i as X = √i and i = √-1
Let us assume X = A + B i
So, (A+i B)² = i
A² + i² B² + 2 AB i = i
(A²-B²) = 0 2 AB = 1
A = +- B So 2 A² = 1/2 A = B = +1/√2 or -1/√2
X = (1+i) /√2 or -(1+i) / √2
Let us assume X = A + B i
So, (A+i B)² = i
A² + i² B² + 2 AB i = i
(A²-B²) = 0 2 AB = 1
A = +- B So 2 A² = 1/2 A = B = +1/√2 or -1/√2
X = (1+i) /√2 or -(1+i) / √2
bhanumarri:
1+i) /√2 or -(1+i) / √2
Answered by
1
i=√(-1) since,i²=-1
(a+/-ib)²=i
a²+i²b²+2abi=i
a²-b²=0 and 2ab=1
a=-+b
therefore sq roots are i+1/√2 and -(1+i)/√2.
(a+/-ib)²=i
a²+i²b²+2abi=i
a²-b²=0 and 2ab=1
a=-+b
therefore sq roots are i+1/√2 and -(1+i)/√2.
Similar questions