Math, asked by Basitshaikh, 11 months ago

find the squar root of the given in the form of a binomial surd : 14+6√5​

Answers

Answered by mysticd
1

Answer:

\sqrt{14+6\sqrt{5}}=3+\sqrt{5}

Step-by-step explanation:

\sqrt{14+6\sqrt{5}}\\=\sqrt{14+2\sqrt{9\times 5}}\\= \sqrt{9+5+2\sqrt{9\times 5}}\\=\sqrt{(\sqrt{9})^{2}+(\sqrt{5})^{2}+2\times \sqrt{9}\times \sqrt{5}}\\=\sqrt{(\sqrt{9}+\sqrt{5})^{2}}\\=\sqrt{9}+\sqrt{5}\\=3+\sqrt{5}

Therefore,

\sqrt{14+6\sqrt{5}}=3+\sqrt{5}

•••♪

Answered by soham4net
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions