Math, asked by alltimeindian6, 1 month ago

find the square of 105 using identity (a+b)²=a²+2ab+b²​

Answers

Answered by kamalhajare543
7

Answer:

\begin{gathered}\begin{gathered}\red{\Large{\underbrace{\underline{\bf{ \{GIVEN\::}}}}} \\ \end{gathered} \end{gathered}

  • (a+b)²=a²+2ab+b²
  • find the square of 105

\begin{gathered}\begin{gathered}\red{\Large{\underbrace{\underline{\bf{ \{solution\::}}}}} \\ \end{gathered} \end{gathered}

\sf \implies \: 105 = 100 {}^{2}  + 5 {}^{2}  + 2(100) \: (5) \\  \\ \sf \implies10000 + 25 + 1000 \\  \\ \sf \implies \boxed{ \bold{ \red{11025}}}

Hence, This is Answer.

Answered by GraceS
17

\sf\huge\bold{Answer:}

Given :

105

identity (a+b)²=a²+2ab+b²

To find :

Square of 105

Solution :

105 can be splitted as 100+5

Squaring 105 i.e (105)²=(100+5)²

Now, using given identity

 \boxed{\tt  \red{ { (a + b) {}^{2}  = {a}^{2} + 2ab +  {b}^{2}   }}}

 \tt = (105) {}^{2}

 \tt = (100 + 5) {}^{2}

 \tt = (100) {}^{2}  + 2(100)(5) +  {5}^{2}

 \tt = 10000 + 10 \times 100 + 25

 \tt =  10000 + 1000 + 25

 \tt  = 11025

 \boxed{  \huge\underline{ \purple{(105) {}^{2}  = 11025}}}

Similar questions