Math, asked by poonamsharma143psn, 10 days ago

find the square of 498 by using the identity(a-b)= a²+b²=2ab​

Answers

Answered by devanshu1234321
2

QUESTION-:

Find the square of 498 using the identity (a-b)²=a²+b²-2ab

EXPLANATION-:

To find its square using the identity let's convert it in the form of identity

→(500-2)²

So now we can find the square-:

→(500-2)²=(500)²+(2)²-2(500×2)

→(500-2)²=250004−2000

→(500-2)²=248004

So the -:

(498)²=248004

Extra information-:

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

Similar questions