Math, asked by kimmira713, 19 days ago

Find the square of 498 using algebraic formula

Answers

Answered by FallenLove
8

\huge \fbox \red{a} \fbox \green{n} \fbox \purple{s} \fbox \orange{w} \fbox \red{e} \fbox \blue{r}

\bold \pink{the \: value \: of \: the \: expression \: is \: 502 \times 498 = 249996}

Step-by-step explanation:-

Given : 

Expression 502×498 .

To find : 

Use the formula to find the value of expression ?

Solution :

Re-write the expression as,

 \red{502 \times 498 = (500 + 2) \times (500 - 2)}

Applying algebraic formula,

 \longrightarrow \orange{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }

Here, 

  • a=500 and b=2

Substitute the value:-

\green{(500 + 2)(500 - 2) = (500) {}^{2}  - (2) {}^{2} }

\green{502 \times 498 = 250000 - 4}

\green{502 \times 498 = 249996}

Therefore, the value of the expression is 

 \fbox \red{502 × 498 = 249996.}

Answered by llitzPrince283ll
2

\huge\boxed{\mathcal\red{Answer : - }}

Decomposing \:  the \:  given \:  number,

⇒  498=500−2             --- ( 1 )

Here, a=500 and b=2

Squaring  \: both  \: the  \: sides \:  of ( 1 ),

⇒  (498)2=(500−2)2

=(500)2−2(500)(2)+(2)2             

 \:  \:  \:  \:  [ (a−b)2=a2−2ab+b2 ]

 \:  \:  \:  \:  \:  \:  \:  \: =250000−2000+4

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =248004

∴  (498)2=248004

                   

                   

                   

Similar questions