Math, asked by Ramu404, 1 year ago

Find the square of sum of roots if the equation -
log(base 3)x*log4x*log5x= log3x*log4x+log4x*log5x+log5x*log3x. (the no. 3, 4 and 5 are the bases of log x.
Thanks!

Answers

Answered by Anonymous
70
hope this helps you ☺☺
Attachments:

Ramu404: Thank u very much sir :)
Anonymous: wlcm
Anonymous: don't call me sir.
PrincessNumera: Great ans
Anonymous: thanks
Ramu404: Ok Mr. Kaushik :P
DaIncredible: woah.. Great answer bhai =D
Anonymous: thanks ☺
Answered by bharathparasad577
2

Answer:

Concept:

Solving Logarithm equations

An equation using the logarithm of an expression containing a variable is referred to as a logarithmic equation. Check to verify if you can write both sides of the equation as powers of the same number before attempting to solve an exponential equation.

Step-by-step explanation:

Given:

$\log _{3} x \cdot \log _{4} x \cdot \log _{5} x=\log _{3} x \cdot \log _{4} x+\log _{4} x \cdot \log _{5} x+\log _{5} x \cdot \log _{3} x

Find:

Find the square of the sum of roots if the equation -$\log _{3} x \cdot \log _{4} x \cdot \log _{5} x=\log _{3} x \cdot \log _{4} x+\log _{4} x \cdot \log _{5} x+\log _{5} x \cdot \log _{3} x

Solution:

We have

$\log _{3} x \cdot \log _{4} x \cdot \log _{5} x=\log _{3} x \cdot \log _{4} x+\log _{4} x \cdot \log _{5} x+\log _{5} x \cdot \log _{3} x

          For $x=1$, \ both \ parts \ of \ the \ equation (1) \ vanish.\\\\Therefore,\  $x=1$ \ is \ root \ of \ the \ equation (1).\\\\For \  x \ not \ equal \ to \ 1\\\\$\log _{3} x \cdot \log _{4} x \cdot \log _{5} x=\log _{3} x \cdot \log _{4} x+\log _{4} x \cdot \log _{5} x+\log _{5} x \cdot \log _{3} x$\\\\Divide both sides by $\log _{3} x \cdot \log _{4} x \cdot \log _{5} x$

             \\$&\Rightarrow 1=\frac{1}{\log _{5} x}+\frac{1}{\log _{3} x}+\frac{1}{\log _{4} x}\\\\=\log _{x} 5+\log _{x} 3+\log _{x} 4 \quad\left[\because \log _{a} b=\frac{1}{\log _{b} a}\right] \\\\&=\log _{x} 60 \quad[\because \log a+\log b+\log c=\log (a b c)] \\\\&\Rightarrow x=60\\\\Thus, $x=\{1,60\}$\\$

#SPJ3

Similar questions