Math, asked by fuse02, 2 days ago

Find the square of (x-3)
with process please answer this

Answers

Answered by anindyaadhikari13
6

\textsf{\large{\underline{Solution}:}}

We have to evaluate the square of (x - 3)²

 \rm =  {(x - 3)}^{2}

Using identity (a - b)² = a² - 2ab + b², we get:

 \rm = {x}^{2}  - 2 \times x \times 3 +  {3}^{2}

 \rm = {x}^{2} - 6x + 9

Therefore:

 \rm: \longmapsto{(x - 3)}^{2} =   {x}^{2}  - 6x + 9

Which is our required answer.

\textsf{\large{\underline{More To Know}:}}

  • (a + b)² = a² + 2ab + b²
  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Answered by BrainlyArnab
2

 \huge \blue{ \boxed{ \bf \color{lime}{ {x}^{2}  - 6x + 9}}}

Step-by-step explanation:

QUESTION :-

Find the square of (x - 3).

_____________________

SOLUTION :-

The square of (x - 3)

 \bf =  >  {(x - 3)}^{2}  \\

 \bf =  >  {x}^{2}    - (2 \times x \times  3) +  {( 3)}^{2} .... \tiny \{using \: identity \:  {(a  -  b)}^{2}  =  {a}^{2}   - 2ab +  {b}^{2}  \} \\

 \bf =  >  \underline \red{ {x}^{2}  -  6x + 9} \\

Hence,

The square of (x - 3) is - 6x + 9.

_____________________

MORE TO KNOW :-

  • (a + b)² = + 2ab +
  • a² - = (a + b)(a - b)
  • + = (a + b)² - 2ab
  • + = (a - b)² + 2ab
  • (a + b + c)² = + + + 2(ab + bc + ac)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
  • (a - b)³ = - - 3ab(a - b)
  • (x + a)(x + b) = + (a + b)x + ab
  • + = (a + b)(a² - ab + )
  • - = (a - b)( + ab + )

_____________________

Hope it helps.

#BeBrainly :-)

Similar questions