Find the square of (x-3)
with process please answer this
Answers
Answered by
6
We have to evaluate the square of (x - 3)²
Using identity (a - b)² = a² - 2ab + b², we get:
Therefore:
★ Which is our required answer.
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)³ = a³ + 3ab(a + b) + b³
- (a - b)³ = a³ - 3ab(a - b) - b³
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
- (x + a)(x + b) = x² + (a + b)x + ab
- (x + a)(x - b) = x² + (a - b)x - ab
- (x - a)(x + b) = x² - (a - b)x - ab
- (x - a)(x - b) = x² - (a + b)x + ab
Answered by
2
Step-by-step explanation:
QUESTION :-
Find the square of (x - 3).
_____________________
SOLUTION :-
The square of (x - 3)
Hence,
The square of (x - 3) is x² - 6x + 9.
_____________________
MORE TO KNOW :-
- (a + b)² = a² + 2ab + b²
- a² - b² = (a + b)(a - b)
- a² + b² = (a + b)² - 2ab
- a² + b² = (a - b)² + 2ab
- (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
- (x + a)(x + b) = x² + (a + b)x + ab
- a³ + b³ = (a + b)(a² - ab + b²)
- a³ - b³ = (a - b)(a² + ab + b²)
_____________________
Hope it helps.
#BeBrainly :-)
Similar questions