find the square root -4-3i
Answers
Given:
-4-3i
To find:
Find the square root -4-3i
Solution:
From given, we have,
-4 - 3i
Let the square root of a + ib be p + iq
where, a = -4 and b = -3
Then, we have,
(p + iq)² = a + ib
equating the real and imaginary parts, we have,
p² - q² = a = -4 ....(1)
2pq = b = -3 ......(2)
using (2), we have,
q = -3/2p ....(3)
we use the formula,
p = 1/√2 ×√[a+√(a²+b²)]
p = 1/√2 ×√[(-4)+√((-4)²+(-3)²)]
p = 1/√2 ×√[-4+√(16+9)]
p = 1/√2 ×√[-4+√(25)]
p = 1/√2 ×√[-4+5]
p = 1/√2 ×√[1]
p = 1/√2
using the value of "p" in equation (3), we get,
q = -3/[2 (1/√2)]
q = -3/√2
Therefore, the square root of -4-3i is 1/√2 - i3/√2 = (1-i3)/√2.
Given (Z)= -4-3i
The square root of the equation is given by the expression
X = √1/2[lzI+a]
Y= √1/2 [lzI-a]
|z|= √(16+9) = √25 = 5
Substituting values,
X= ±√1/2(5-4) ⇒ ±√[1/2(1)]
or, x =± 1/√2 ⇒ ± 1/√2
Y =∓ √{1/2(5+4)} = √{1/2 (9)}
or, Y=∓3 /√2.
∴ square root = ± 1/√2 ∓ 3/√2i.