Math, asked by muskan9331, 2 months ago

find the square root
8-√15
please explain,no spamming​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\: \sqrt{8 -  \sqrt{15} }  =  \sqrt{x}  -  \sqrt{y}  \: (where \: x > y) -  - (1)

On squaring both sides, we get

\rm :\longmapsto\:8 -  \sqrt{15} =  {( \sqrt{x}  -  \sqrt{y} )}^{2}

\rm :\longmapsto\:8 -  \sqrt{15} =   {( \sqrt{x} )}^{2} +  {( \sqrt{y} )}^{2} - 2 \sqrt{x} \sqrt{y}

\rm :\longmapsto\:8 -  \sqrt{15} = x + y - 2 \sqrt{xy}

can also be rewritten as

\rm :\longmapsto\:8 -  \sqrt{15} = x + y -  \sqrt{4xy}

On comparing, we get

\rm :\longmapsto\:x + y = 8 -  -  - (2)

\rm :\longmapsto\:4xy = 15 -  -  - (3)

We know that,

\rm :\longmapsto\: {(x - y)}^{2} =  {(x + y)}^{2} - 4xy

\rm :\longmapsto\: {(x - y)}^{2} =  {(8)}^{2} -15

\rm :\longmapsto\: {(x - y)}^{2} =  64 -15

\rm :\longmapsto\: {(x - y)}^{2} =  49

\rm :\longmapsto\: {(x - y)}^{2} =   {7}^{2}

\rm :\longmapsto\:x - y = 7 -  -  - (4) \:  \:  \:  \: as \: x > y

On adding equation (2) and equation (4), we get

\rm :\longmapsto\:x + y + x - y = 8 + 7

\rm :\longmapsto\:2x = 15

\bf\implies \:x = \dfrac{15}{2}

On Subtracting equation (4) from equation (2), we get

\rm :\longmapsto\:x + y - x + y = 8- 7

\rm :\longmapsto\:2y = 1

\bf\implies \:y= \dfrac{1}{2}

So, on substituting the values of x and y in equation (1), we get

\underbrace{\boxed{ \tt{ \: \bf \: \sqrt{8 \:  -  \:  \sqrt{15} }  \:  =  \:  \sqrt{\bigg(\dfrac{15}{2} \bigg)} \:  -  \:  \sqrt{\bigg(\dfrac{1}{2} \bigg)}}}}

Alternative Method :-

\rm :\longmapsto\: \sqrt{8 -  \sqrt{15} }

can be rewritten as

\rm \:  =  \:  \: \: \sqrt{\bigg(\dfrac{16}{2} \bigg) -  \sqrt{15} }

\rm \:  =  \:  \: \: \sqrt{\bigg(\dfrac{15 + 1}{2} \bigg) -  \sqrt{15} }

\rm \:  =  \:  \: \: \sqrt{\bigg(\dfrac{15}{2} \bigg) + \bigg(\dfrac{1}{2} \bigg) - 2 \sqrt{\bigg(\dfrac{15}{2 \times 2} \bigg)} }

\rm \:  =  \:  \: \:  \sqrt{ \bigg( { \sqrt{\bigg(\dfrac{15}{2} \bigg)} } \bigg)^{2} +  {\bigg( \sqrt{\bigg(\dfrac{1}{2} \bigg)} \bigg) }^{2}  - 2 \sqrt{\bigg(\dfrac{15}{2} \bigg)} \sqrt{\bigg(\dfrac{1}{2} \bigg)}   }

\rm \:  =  \:  \:  {\bigg( \sqrt{\bigg(\dfrac{15}{2} \bigg)}   -  \sqrt{\bigg(\dfrac{1}{2} \bigg)} } \bigg)^{2}

\rm \:  =  \:  \:  { \sqrt{\bigg(\dfrac{15}{2} \bigg)}   -  \sqrt{\bigg(\dfrac{1}{2} \bigg)} }

Hence,

\underbrace{\boxed{ \tt{ \: \bf \: \sqrt{8 \:  -  \:  \sqrt{15} }  \:  =  \:  \sqrt{\bigg(\dfrac{15}{2} \bigg)} \:  -  \:  \sqrt{\bigg(\dfrac{1}{2} \bigg)}}}}

Additional Information :-

More Identities to know

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions