Math, asked by Anonymous, 1 day ago

Find the square root by prime factorization method

1. \sqrt{164} \\ 2. \sqrt{233} \\ 3. \sqrt{963} \\ 4. \sqrt{244} \\ 5. \sqrt{442} \\ 6. \sqrt{562}

Answers

Answered by TheBrainliestUser
21

To Find:

The square root by prime factorisation method.

  1. √164
  2. √233
  3. √963
  4. √244
  5. √442
  6. √562

1. √164

By using Prime factorisation method.

Factors of √164 = √(2 × 2 × 41)

ㅤㅤㅤㅤㅤㅤㅤ= √(2 × 2) × √(√41 × √41)

ㅤㅤㅤㅤㅤㅤㅤ= 2√41

Thus,

  • Square root of 164 = 2√41 = 12.80

2. √233

By using Prime factorisation method.

Factors of √233 = √(233)

ㅤㅤㅤㅤㅤㅤㅤ= √(√233 × √233)

ㅤㅤㅤㅤㅤㅤㅤ= √233

Thus,

  • Square root of 233 = √233 = 15.26

3. √963

By using Prime factorisation method.

Factors of √963 = √(3 × 3 × 107)

ㅤㅤㅤㅤㅤㅤㅤ= √(3 × 3) × √(√107 × √107)

ㅤㅤㅤㅤㅤㅤㅤ= 3√107

Thus,

  • Square root of 963 = 3√107 = 31.03

4. √244

By using Prime factorisation method.

Factors of √244 = √(2 × 2 × 46)

ㅤㅤㅤㅤㅤㅤㅤ= √(2 × 2) × √(√61 × √61)

ㅤㅤㅤㅤㅤㅤㅤ= 2√61

Thus,

  • Square root of 244 = 2√61 = 15.62

5. √442

By using Prime factorisation method.

Factors of √442 = √(2 × 13 × 17)

ㅤㅤㅤㅤㅤㅤㅤ= √(√2 × √2) × √(√13 × √13) × √(√17 × √17)

ㅤㅤㅤㅤㅤㅤㅤ= 2√(13 × 17)

ㅤㅤㅤㅤㅤㅤㅤ= 2√221

Thus,

  • Square root of 442 = 2√221 = 29.73

6. √562

By using Prime factorisation method.

Factors of √562 = √(2 × 281)

ㅤㅤㅤㅤㅤㅤㅤ= √(√2 × √2) × √(√281 × √281)

ㅤㅤㅤㅤㅤㅤㅤ= √562

Thus,

  • Square root of 562 = √562 = 23.70
Similar questions