Math, asked by vmali7500, 1 year ago

find the square root of
1-i​

Answers

Answered by Anonymous
4

{\bold {\huge {Question-}}}

 \sqrt{1 - i}

{\bold {\large{\green {\underline{Answer:}}}}}

let us assume (x+iy) be the roots of 1-i

now,

1 - i \:  =  {(x + iy)}^{2}  \\ 1 - i =  {x}^{2}   - {y}^{2}  +( 2xy)i

on comparing:

 {x }^{2}  -  {y}^{2}  = 1 -  -  -  -  - (1) \\ 2xy =  - 1 -  -  -  -  -  - (2)

we know that

( {x}^{2}  + {y}^{2} )^{2}  = ( {x}^{2}  -  {y}^{2} ) + 4 {x }^{2}  {y}^{2}

by equation[ 1 ]and[ 2 ]

( {x}^{2}  +  {y}^{2} )^{2}  = 1 + 1

 {x}^{2}  +  {y}^{2}  =  \sqrt{2}  -  -  -  -  - (3)

on adding equ. 1 and 3

 {x}^{2}  =  \frac{1 +  \sqrt{2} }{2}

x =     +  - \sqrt{ \frac{2 +  \sqrt{2} }{2} }

y =  +  -  \sqrt{ \frac{2 -  \sqrt{2} }{2} }

so the roots will be:

 \sqrt{ \frac{2 +  \sqrt{2} }{2} }  - i \sqrt{ \frac{2 -  \sqrt{2} }{2} }

or

 \sqrt{ \frac{2 +  \sqrt{2} }{2} }  + i \sqrt{ \frac{2  -  \sqrt{2} }{2} }

Similar questions