Math, asked by rathouraman7126, 1 year ago

Find the square root of 10 151/225

Answers

Answered by Swarup1998
3

The square root of 10\dfrac{151}{225} is 3\dfrac{4}{15}.

Step-by-step explanation:

Step 1. Let us express the given mixed fraction as an improper fraction first.

\quad 10\dfrac{151}{225}

=10+\dfrac{151}{225}

=\dfrac{10\times 225}{225}+\dfrac{151}{225}

=\dfrac{10\times 225+151}{225}

=\dfrac{2250+151}{225}

=\dfrac{2401}{225}

Step 2. Now we prime factorize the numerator and denominator to check whether they are perfect squares.

Here,

  • 2401=7\times 7\times 7\times 7=7^{2}\times 7^{2}=(7\times 7)^{2}=49^{2}

  • 225=3\times 3\times 5\times 5=3^{2}\times 5^{2}=(3\times 5)^{2}=15^{2}

Clearly, 2401 and 225 are perfect squares.

Step 3. We find the required square root.

Now, \sqrt{10\dfrac{151}{225}}

=\sqrt{\dfrac{2401}{225}}

=\dfrac{\sqrt{2401}}{\sqrt{225}}

=\dfrac{\sqrt{49^{2}}}{\sqrt{15^{2}}}

=\dfrac{49}{15}

=3\dfrac{4}{15}

Answered by raziya202
0

Answer:

Step-by-step explanation:

Similar questions