Find the square root of 16+30i
Answers
Answered by
1
Answer:
it's ans is -63ivhhhgghh
Answered by
20
Answer:
AccordingtotheQuestion
Assumption
√16 - 30i = (x + iy) ..... (1)
\textbf{\underline{Squarring\;both\;sides :-}}
Squarringbothsides :-
(16 - 30i) = (x - iy)²
(16 - 30i) = (x² - y²) - i(2xy) ... (2)
Here
\Large{\boxed{\sf\:{Real\;and\;imaginary\;part\;of\;both\;sides\;of\;(2)}}}
Realandimaginarypartofbothsidesof(2)
(x² - y²) = 16
2xy = 30
(x² + y²) = √{(x² - y²)² + 4x²y²}
= √(16² + 30²)
= √(256 + 900)
= √1156
= 34
Hence,
(x² - y²) = 16 .... (3)
Also,
(x² + y²) = 34 ..... (4)
\Large{\boxed{\sf\:{Solving\;(3)\;and\;(4)}}}
Solving(3)and(4)
x² = 25
x = √25
x = ±5
Also,
y² = 9
y = √9
y = ±3
Here
xy > 0
Therefore,
(x = 5 and y = 3) or (x = -5 and y = -3)
Hence,
√16 - 30i = (5 - 3i) or (-5 + 3i)
Similar questions