find the square root of 256 (x-a)8 (x-b)4 (x-c)16 (x-d)20 with expansion
Answers
Answered by
3
Given : Expression :
256 (x-a)8 (x-b)4 (x-c)16 (x-d)20
To Find : Square root
Solution:
256(x-a)⁸(x-b)⁴(x-c)¹⁶(x-d)²⁰
256 = 16²
(x-a)⁸ = (x-a)⁴ˣ²
using (x)ᵃˣᵇ = (xᵃ)ᵇ
Hence (x-a)⁴ˣ² = ((x -a)⁴)²
=> (x-a)⁸ = ((x -a)⁴)²
Similarly
(x-b)⁴ = ((x -b)²)²
(x-c)¹⁶ = ((x -c)⁸)²
(x-d)²⁰ = ((x -d)¹⁰)²
256(x-a)⁸(x-b)⁴(x-c)¹⁶(x-d)²⁰
= 16² ((x -a)⁴)²((x -a)⁴)² ((x -b)²)² ((x -c)⁸)² ((x -d)¹⁰)²
Using aⁿ * bⁿ = (a b)ⁿ
= ( 16 (x -a)⁴(x -b)²(x -c)⁸(x -d)¹⁰)²
√a² = a
Hence square root of ( 16 (x -a)⁴(x -b)²(x -c)⁸(x -d)¹⁰)²
= 16 (x -a)⁴(x -b)²(x -c)⁸(x -d)¹⁰
Learn More:
find the value of x by factorization, x2-8x+1280=0 - Brainly.in
brainly.in/question/7343350
Using factor theorem, factorize each of the following polynomial ...
brainly.in/question/15904651
Similar questions
Economy,
15 days ago
Physics,
15 days ago
Math,
1 month ago
Accountancy,
9 months ago
Social Sciences,
9 months ago