Math, asked by Joker1111, 1 year ago

find the square root of 3 + 4i

Answers

Answered by avinash72
1
here is your answer....
Attachments:
Answered by No1BadBoy
6

  \large{\bold{ \underline{ \underline {  \:  \: Given \:  \: }}}}

 \toComplex number [Z] = 3 + 4i

 \toImaginary part [Im(Z)] = 4

 \toReal part [Re(Z)] = 3

\large{\bold{ \underline{ \underline {  \:  \: To  \: Find  \:  \: }}}}

 \to \bold{ \sqrt{z}  = \: ?  }

\large{\bold{ \underline{ \underline {  \:  \: Solution   \:  \: }}}}

Imaginary part > 0 , Therefore ,

 \fbox{ \fbox{ \bold{ \:  \:  \sqrt{z}  = ± \: (  \:  \:  \sqrt{ \frac{ |z|  + Re(Z) }{2} } + \sqrt{ \frac{ |z|  - Re(Z)}{2} } \:  \:  ) \:  \:  \: }}}

 \to \bold{ \sqrt{z}  = ± \: (  \sqrt{ \frac{ 5  + 3 }{2} } +i \sqrt{ \frac{ 5 - 3}{2} } ) }\\  \\  \to \bold{\sqrt{z}  = ± \: (  \sqrt{ \frac{ 8}{2} } +i \sqrt{ \frac{ 2}{2} } )}  \\  \\\to  \bold{ \sqrt{z}  = ± \: (  \sqrt{ 4 } +i \sqrt{  1}) } \\  \\\to  \bold{ \sqrt{z}  = ± \: (  2 +i 1)  }

Hence ,  \bold{± \: (  2 +i 1)  } is the square root of given complex number

Similar questions