Math, asked by rinithamos, 1 month ago

find the square root of 3-4i

Answers

Answered by rv1303495
0

Answer:

you're d"mb so shut up bestie

Answered by brilliantgirl1105
1

Answer:

±(2+i)

Step-by-step explanation:

 Let \: \sqrt{3 - 4i}  \:  =  \sqrt{x + i \sqrt{y} }

Then \:  ({ \sqrt{3 + 4i} })^{2}  =  ( { \sqrt{x + i \sqrt{y} } })^{2}

⇒ \: 3 + 4i = x - y + 2i \sqrt{xy}

Comparing \:  \:  real \:  \:  part \:  \:  and \:  \:  imaginary \:  \:  part \: ,  \:  \: we  \:  \: get

3 = x - y \:  \: and \:  \: 2 \sqrt{xy }  = 4

 ⇒xy = 4

∴ \: x + y = ±5

As \: x≠ - 5 ; \: \:  \sqrt{x}   \: \: is  \: \: a \:  \: real \:  \: part

∴ \: x = 4 \: \: and \:  \: y = 1

⇒ \:  \sqrt{x}  = ±2 \:  \:  \: y =±1

Hence  \:  \: square  \:  \: root \:  \:  is \:  \: ±(2 + i)

Please mark me brainliest.

Similar questions