Math, asked by soumilonestar02, 9 months ago

Find the square root of 4i?

(It is from complex number)​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{4\,i}

\underline{\textbf{To find:}}

\textsf{Square rooot of }\;\mathsf{4\,i}

\underline{\textbf{Solution:}}

\mathsf{Let\;\sqrt{4i}=x+i\,y}

\textsf{Squaring on bothsides, we get}

\mathsf{4\,i=(x+i\,y)^2}

\mathsf{4\,i=(x^2-y^2)+i\,2xy}

\textsf{Equating real and imaginary parts on bothsides we get}

\mathsf{x^2-y^2=0\;\;\;\&\;\;\;2xy=4}

\mathsf{x^2-y^2=0\;\implies\;x^2=y^2\;\implies\;x=y}

\mathsf{2xy=4\;\implies\;xy=2}

\mathsf{When\;x=y,\;\;y^2=2\;\implies\;y=\pm\,\sqrt{2}}

\implies\boxed{\mathsf{\sqrt{4\,i}=\sqrt{2}+i\,\sqrt{2}\;\;(or)\;\;-\sqrt{2}-i\,\sqrt{2}}}

Similar questions