Math, asked by shivanirjsh, 7 months ago

find the square root of –6+8i​

Answers

Answered by Anonymous
8

Given ,

The complex number is -6 + 8i

Let ,

 \tt \sqrt{ - 6 + 8i}  = a + ib   \: -  - \:  (i)

Squaring on both sides , we get

-6 + 8i = (a + ib)²

-6 + 8 = (a)² + (ib)² + 2aib

-6 + 8 = (a)² - (b)² + 2aib

Compare real parts and imaginary parts on both sides , we get

-6 = (a)² - (b)² --- (ii)

and

8 = 2ab

b = 8/2a --- (iii)

Put the value of b = 8√2a in eq (iii) , we get

-6 = (a)² - (8/2a)²

-6 = (a)² - 64/4(a)²

Taking LCM , we get

 \tt \implies - 6 =  \frac{4 {(a)}^{2}  - 64}{4 {(a)}^{2} }

  \tt \implies - 24 {(a)}^{2}  = 4 {(a)}^{2}  - 64

 \tt \implies 4 {(a)}^{2}  + 24 {(a)}^{2}  - 64 = 0

  \tt \implies {(a)}^{4}  + 6 {(a)}^{2}  - 16 = 0

 \tt \implies  {(a)}^{4}  + 8 {(a)}^{2}  - 2 {(a)}^{2}  - 16 = 0

 \tt \implies  {(a)}^{2}  \{{(a)}^{2}  + 8 \} - 2 \{ {(a)}^{2}  + 8 \} = 0

 \tt \implies  {(a)}^{2}  - 2 = 0 \:  \: or \:  \:  {(a)}^{2}   +  8 = 0

 \tt \implies a =   \pm\sqrt{2 }  \: or \: a =    \pm\sqrt{ - 8}

Since , a is a real number

Therefore , the value of a is ± √2

Put the value of a = ± 2 in eq (iii) , we get

b = 8/2√2 or b = -8/2√2

b = 2√2 or b = -2√2

Put the value of a and b in eq (i) , we get

√2 + 2√2i or -√2 - 2√2i

Therefore , the square root of given complex number is

  • √2 + 2√2i or -√2 - 2√2i

_____________ Keep Smiling

Answered by shadowsabers03
11

Given to find square root,

\longrightarrow z=-6+8i

Compare it with z=a+ib.

Then,

  • a=-6
  • b=8

Modulus of z is,

\longrightarrow r=\sqrt{(-6)^2+8^2}

\longrightarrow r=10

Solution 1:-

We have, if,

\longrightarrow z=a+ib,

then,

\longrightarrow \sqrt z=\pm\left(\sqrt{\dfrac{r+a}{2}}+i\sqrt{\dfrac{r-a}{2}}\right)

Then,

\longrightarrow \sqrt z=\pm\left(\sqrt{\dfrac{10-6}{2}}+i\sqrt{\dfrac{10+6}{2}}\right)

\longrightarrow\underline{\underline{\sqrt z=\pm\sqrt2\left(1+2i\right)}}

Solution 2:-

Let us convert our complex number in polar form.

\longrightarrow z=10\left(-\dfrac{6}{10}+i\cdot\dfrac{8}{10}\right)

\longrightarrow z=10\left(-\dfrac{3}{5}+i\cdot\dfrac{4}{5}\right)

Let \theta=\arg(z) so that \cos\theta=\dfrac{-3}{5}.

We have, if,

\longrightarrow z=r(\cos\theta+i\sin\theta),

then,

\longrightarrow \sqrt z=\left[r(\cos\theta+i\sin\theta)\right]^{\frac{1}{2}}

By De Moivre's Theorem,

\longrightarrow \sqrt z=\pm\sqrt r\left(\cos\left(\dfrac{\theta}{2}\right)+i\sin\left(\dfrac{\theta}{2}\right)\right)

\longrightarrow \sqrt z=\pm\sqrt r\left(\sqrt{\dfrac{1+\cos\theta}{2}}+i\sqrt{\dfrac{1-\cos\theta}{2}}\right)

Then,

\longrightarrow \sqrt z=\pm\sqrt{10}\left(\sqrt{\dfrac{1+\dfrac{-3}{5}}{2}}+i\sqrt{\dfrac{1-\dfrac{-3}{5}}{2}}\right)

\longrightarrow \sqrt z=\pm\sqrt{10}\left(\sqrt{\dfrac{2}{10}}+i\sqrt{\dfrac{8}{10}}\right)

\longrightarrow \sqrt z=\pm\left(\sqrt2+i\sqrt8\right)

\longrightarrow\underline{\underline{\sqrt z=\pm\sqrt2\left(1+2i\right)}}

Similar questions