Math, asked by dhananjaysurya56, 1 month ago

find the square root of 6+8i

Answers

Answered by lovanyasharma112
0

Answer:

Since xy>0, so x and y are of the same sign. ∴ (x=2√2andy=√2)or(x=-2√2andy=-√2). Hence, √6+8i=(2√2+√2i)or(-2√2-√2i).

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\: \sqrt{6 + 8i}

Let we assume that

\rm :\longmapsto\: \sqrt{6 + 8i} = x + iy -  -  - (1)

On squaring both sides, we get

\rm :\longmapsto\:6 + 8i =  {(x + iy)}^{2}

\rm :\longmapsto\:6 + 8i =  {x}^{2} +  {i}^{2} {y}^{2} + 2xyi

\rm :\longmapsto\:6 + 8i =  {x}^{2}- {y}^{2} + 2xyi

So, on comparing Real and Imaginary parts, we get

\bf\implies \:\boxed{ \tt{ \:  {x}^{2} -  {y}^{2} = 6 \:  \: }} -  -  - (2)

and

\bf\implies \:\boxed{ \tt{ \: 2xy  = 8\:  \: }} -  -  - (3)

We know,

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{ {[ {x}^{2} - {y}^{2} ]}^{2} +  {(2xy)}^{2} }

So, on substituting the values, we get

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{ {6 }^{2} +  {8}^{2} }

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{36 + 64 }

\rm :\longmapsto\: {x}^{2} +  {y}^{2} =  \sqrt{100 }

\bf\implies \:\boxed{ \tt{ \:  {x}^{2} +  {y}^{2}  = 10 \:  \: }} -  -  -  - (4)

On adding equation (2) and equation (4), we get

\rm :\longmapsto\:2 {x}^{2} = 16

\rm :\longmapsto\:{x}^{2} = 8

\bf\implies \:x \:  =  \:  \pm \: 2 \sqrt{2}  -  -  -  - (5)

On Subtracting equation (2) from equation (4), we get

\rm :\longmapsto\: {2y}^{2} = 4

\rm :\longmapsto\: {y}^{2} = 2

\bf\implies \:y \:  =  \:  \pm \sqrt{2}  -  -  -  - (6)

Hᴇɴᴄᴇ,

➢ Pair of points of the for x and y are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 2 \sqrt{2}  & \sf  \sqrt{2}  \\ \\ \sf  - 2 \sqrt{2}  & \sf  -  \sqrt{2}  \end{array}} \\ \end{gathered}

Hence,

 \red{\bf\implies \:\boxed{ \tt{ \:  \sqrt{6 + 8i} =  \pm \: (2 \sqrt{2} + i \sqrt{2} )\:  \: }}}

Similar questions