Math, asked by Mihir9533, 1 year ago

Find the square root of (a+b+c)^2+(a+b-c)^2+2(c^2-a^2-b^2-2ab)

Answers

Answered by Prakhar2908
3

 \sqrt{ {(a + b + c)}^{2} + {(a + b - c)}^{2} + 2( {c}^{2} - {a}^{2} - {b}^{2} - 2ab }     We will expand both using identity (a+b+c)^2= a^2+b^2+c^2+2ab+2bc+2ac      \sqrt{ {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ac + {a}^{2} + {b}^{2} + {c}^{2} + 2ab - 2bc - 2ac + 2( {c}^{2} - {a}^{2} - {b}^{2} - 2ab)}     Now opening the brackets we will get      \sqrt{ {a}^{2} + {b}^{2} + {c}^{2} + 2ab + 2bc + 2ac + {a}^{2} + {b}^{2} + {c}^{2} \: + 2ab - 2bc - 2ac + 2 {c}^{2} - 2 {a}^{2} - 2 {b}^{2} - 4ab}     Now simplyfying this , we get :      \sqrt{4 {c}^{2}}     \bold{Answer :}     \{2c}

Answered by Dexteright02
6

Hello!

We have:

\sqrt{\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(c^2-a^2-b^2-2ab\right)}

Solution:

\sqrt{\left(a+b+c\right)\left(a+b+c\right)+\left(a+b-c\right)^2+2\left(-a^2-2ab+c^2-b^2\right)}

\sqrt{\left(a+b+c\right)\left(a+b+c\right)+\left(a+b-c\right)\left(a+b-c\right)+2\left(-a^2-2ab+c^2-b^2\right)}

\sqrt{\left(a+b+c\right)\left(a+b+c\right)+\left(a+b-c\right)\left(a+b-c\right)+2\left(c^2-a^2-b^2-2ab\right)}

Note¹: let's simplify: \left(a+b+c\right)\left(a+b+c\right)

aa+ab+ac+ab+bb+bc+ac+bc+cc

a^2+2ab+2ac+b^2+2bc+c^2

Note²: let's simplify: \left(a+b-c\right)\left(a+b-c\right)

aa+ab+a\left(-c\right)+ba+bb+b\left(-c\right)+\left(-c\right)a+\left(-c\right)b+\left(-c\right)\left(-c\right)

aa+ab-ac+ab+bb-bc-ac-bc+cc

aa+2ab-2ac+bb-2bc+cc

a^2+2ab-2ac+b^2-2bc+c^2

Note³: let's simplify: 2\left(c^2-a^2-b^2-2ab\right)

2c^2+2\left(-a^2\right)+2\left(-b^2\right)+2\left(-2ab\right)

2c^2-2a^2-2b^2-4ab

Now we have the replacement:

\sqrt{a^2+2ab+2ac+b^2+2bc+c^2+a^2+2ab-2ac+b^2-2bc+c^2+2c^2-2a^2-2b^2-4ab}

group the similar ones, let's see:

\sqrt{a^2+a^2-2a^2+2ab+2ac+2ab-2ac-4ab+b^2+b^2-2b^2+2bc-2bc+c^2+c^2+2c^2}

\sqrt{\diagup\!\!\!\!\!\!2a^2-\diagup\!\!\!\!\!\!2a^2+\diagup\!\!\!\!\!\!4ab-\diagup\!\!\!\!\!\!4ab+\diagup\!\!\!\!\!\!2ac-\diagup\!\!\!\!\!\!2ac+\diagup\!\!\!\!\!\!2b^2-\diagup\!\!\!\!\!\!2b^2+\diagup\!\!\!\!\!\!2bc-\diagup\!\!\!\!\!\!2bc+2c^2+2c^2}

\sqrt{2c^2+2c^2}

\sqrt{4c^2}

\sqrt{4}\sqrt{c^2}

\boxed{\boxed{Answer = 2c}}\end{array}}\qquad\checkmark

__________________________

I Hope this helps, greetings ... Dexteright02 ! =)

Similar questions