Math, asked by ammu1312005, 8 months ago

find the square root of a complex number root (7-24i)

Answers

Answered by Anonymous
1

{\huge{\tt{\red{\overbrace{\overbrace{\purple{\underbrace{\underbrace{\orange{Answer :}}}}}}}}}}

 \tt{→ \sqrt{ - 7 - 24i} =x  +iy }

 \tt{→ - 7 - 24i = (x +  {iy)}^{2}}

 \tt{ →{x}^{2} - {y}^{2}  =  - 7}

 \tt{→2xy =  - 24}

 \tt{→({x}^{2} +  {y}^{2} )}^{2}  = ( {x}^{2}  -  {y}^{2} ) {}^{2} + (2xy) {}^{2} </p><p>

 \tt{→(x + y) {}^{2} = 25 - (2)}

 \tt{→ {x}^{2} = 9 \: and \:  \:  {y}^{2}  = 16 }

 \tt{→x = ±3 \: and \: y = ±4}

Similar questions