Math, asked by alinat, 1 year ago

find the square root of complex number 8-15i

Answers

Answered by amitnrw
33

Answer:

(3i- 5)/√2 or (5-3i)/√2

Step-by-step explanation:

ley say square root of complex number 8-15i is

a + ib

then squaring it

a^2 + i^2b^2 + 2abi

a^2 - b^2 + 2abi

comparing with

8 - 15i

a^2-b^2 = 8

2ab = - 15

b = -15/2a

a^2 - (-15/2a)^2 = 8

4a^4 - 225 = 32a^2

4a^4 -32a^2 - 225 = 0

4a^4 - 50a^2 + 18a^2 - 225 = 0

2a^2(2a^2 - 25)+(2a^2 - 25) = 0

(2a^2 + 9) (2a^2 - 25) = 0

a^2 = -9/2. or a^2 = 25/2

a = 3i/√2. a = 5/√2

b = -5i/√2. b = -3/√2

a + ib = (5 - 3i)/√2

or

a + ib = (3i - 5)/√2

square root of complex number 8-15i is

(3i- 5)/√2 or (5-3i)/√2

Answered by krishnaanil7646
0

Answer:

5-3i/root2

Step-by-step explanation:

a^2 - (-15/2a)^2 = 8

4a^4 - 225 = 32a^2

4a^4 -32a^2 - 225 = 0

4a^4 - 50a^2 + 18a^2 - 225 = 0

2a^2(2a^2 - 25)+(2a^2 - 25) = 0

(2a^2 + 9) (2a^2 - 25) = 0

a^2 = -9/2. or a^2 = 25/2

a = 3i/√2. a = 5/√2

b = -5i/√2. b = -3/√2

Similar questions