Math, asked by deepak213, 1 year ago

find the square root of complex number of 2-2√3i

Answers

Answered by Anonymous
6

 \sqrt{3}
Answered by abu7878
2

Answer:

√3-i is the square root of 2-2√3 i

 

Step-by-step explanation:

Consider the given complex number 2-2√3 i equate it to x+iy

x+iy=2-2√3 i

Square the above equation both sides

We get

(x+i y)^{2}=(2-2 \sqrt{3} i)^{2}

Apply (a+b)^2 formula

Then we get

Real part=x^{2}-y^{2}=2

Imaginary part=2xy=-2√3 i  

xy=-√3 i  

y=-\frac{\sqrt{3} i}{x}

Substitute the value of y in real part

\begin{array}{l}{x^{2}-\left(-\frac{\sqrt{3} t}{x}\right)^{2}=2} \\ {x^{2}-\frac{3}{x^{2}}=2}\end{array}

By taking LCM

\begin{array}{l}{x^{4}-3=2 x^{2}} \\ {x^{4}-2 x^{2}-3=0}\end{array}

By factorizing the above equation

We get the factors as \left(x^{2}+1\right)\left(x^{2}-3\right)=0

Here \left(x^{2}+1\right)  is not equal to 0

So \left(x^{2}-3\right) = 0

x=\pm \sqrt{3}

If  

x=√3        x=-√3  

y=-\frac{\sqrt{3}}{\sqrt{3}} \quad y=\frac{\sqrt{3}}{\sqrt{3}}

=-1             =1

Therefore √3-i is the square root of 2-2√3 i

Similar questions