Math, asked by vibhavisthebest, 10 months ago

Find the Square root of
i)1-2i

Answers

Answered by jindal2009
0

Answer:

Solve the equation

(a+ib)2=(a2−b2)+i(2ab)=1+2i.

where a,b∈R. Hence b=1/a and 1=a2−b2=a2−1/a2, that is

a4−a2−1=0.

Can you take it from here?

At the end you should find that one root is z1=(5–√+1)/2−−−−−−−−−√+i(5–√−1)/2−−−−−−−−−√ and the other one is z2=−z1.

Answered by swethassynergy
2

The Square root of 1-2i   is   \±( \sqrt{\frac{\sqrt{5} +1}{2} }  +\sqrt{\frac{\sqrt{5} -1}{2} } \  i).

Step-by-step explanation:

Given:

1-2i

To Find:

The Square root of 1-2i.

Formula Used:

(x+y)^{2} =x^{2} +y^{2} +2xy

(x^{2} +y^{2} )^{2} =(x^{2} -y^{2} )^{2} +4x^{2} y^{2}

i=\sqrt{-1}

Solution:

As given,1-2i.

Let \sqrt{ 1-2i} =a+ib

Squaring both sides.

(\sqrt{ 1-2i})^{2}  =(a+ib)^{2} \\          1-2i            = a^{2} +(ib)^{2} +i(2ab)\\          1-2i= (a^{2} -b^{2} )+i(2ab)\\  ------------- equation no.01.

Comparing real and imaginary parts  of equation no.01,we get.

a^{2} -b^{2} =1\   ------------ equation no.02.

\\ \ 2ab=-2

(a^{2} +b^{2} )^{2} =(a^{2} -b^{2} )^{2} +4a^{2} b^{2}

               =1^{2} +(-2)^{2} \\                             =1+4 =5

a^{2} +b^{2} =\sqrt{5}   ---- equation no.03.

Adding  equation no.02 and equation no.03 ,we get.

2a^{2} =\sqrt{5}+1

a=  \±  \sqrt{\frac{\sqrt{5} +1}{2} }

Subtracting equation no.03 from equation no.02,we get.

-2b^{2} =1-\sqrt{5}

2b^{2} =\sqrt{5}-1  

b = \± \sqrt{\frac{\sqrt{5} -1}{2} }

Therefore,

\sqrt{ 1-2i} =a+ib=  \±( \sqrt{\frac{\sqrt{5} +1}{2} }  + \sqrt{\frac{\sqrt{5} -1}{2} } \  i)

Thus,the Square root of 1-2i   is   \±( \sqrt{\frac{\sqrt{5} +1}{2} }  + \sqrt{\frac{\sqrt{5} -1}{2} } \  i).

#SPJ3

Similar questions