Math, asked by 2balitropic, 9 months ago

Find the square root of i.

Answers

Answered by ItzArchimedes
6

Answer:

Here, we need to find √i

Here ,

i is a complex number.

i = -1

We need to find √i

√i = √√-1

[ °.° a = ² a ]

√i = ⁴√-1

Concept:

Complex numbers : Complex numbers are the numbers which has a negative number under a square root

Here

√-1 = i

i² = (√-1)² = -1

i³ = i².i = - 1.i = - i

i⁴ = i².i² = - 1(-1) = 1

Answered by harshpreets550
0

Heye

your answer

_______________________

 \sqrt{i}  = ( - 1) \frac{1}{4}  \\ let \:  \sqrt{i}  = a - + ib \\ i = (a + ib) \\ i =  {a}^{2}  +  {i}^{2}  +  {b}^{2}  + 2ab \\ i =  {a}^{2}  -  {b}^{2} + 2ab \\  {a -  {b}^{2} } =  \: 2ab \:  = 1 \\  {a}^{2}  =  {b}^{2}  =a =   \frac{1}{26}  \\ ( \frac{ 1}{26}) =  {6}^{2}  \\  \frac{1}{4b}  =  {b}^{2}  \\   \\  {b}^{4}  =  \frac{1}{4}  \\  \\ b =  \frac{1}{ \sqrt{2} }  \:  \:  = a \:  \:  \:   \: 1 \times \frac{1}{ \sqrt{3} }  \\  \sqrt{i}  =    + ( \frac{1}{ \sqrt{2} }  +  \frac{1}{ \sqrt{2} } ) \\   \\  \sqrt{1 \frac{ + }{1} } ( \frac{ \sqrt{2} }{2}  + i  \frac{ \sqrt{2} }{2}  \\  \\  \\ is \: your \: answer

_______________________

mark me brainliest..........

Similar questions