Math, asked by fardin7, 1 year ago

find the square root of i(i=√-1)

Answers

Answered by manikmonga
0
Compare real parts and imaginary parts,. x2 – y2 = 8 (1). 2xy = -6 (2). Now, consider the modulus: |z|2= |z2|. \ x2 + y2 = Ö(82 + 62) = 10 (3). Solving (1) and (3), we get x2 ...
Answered by Anonymous
3

Answer:

\boxed{ \sqrt{i} = \frac{i + 1}{\sqrt{2}}}

Step-by-step explanation:

Good question:

We know that:

 i = \sqrt{-1}

\implies i^2 = - 1...............................(1)

 \bf{Lets\:find\:(i+1)^2\:\::-}

\implies ( i + 1 )^2 = (i + 1)(i + 1)

\implies (i + 1)^2 = i(i + 1) + 1(i+1)

\implies (i + 1)^2 = i^2 + i + i + 1

\implies (i + 1)^2 = -1 + 1 + 2 i   [ From (1) ]

\implies (i + 1)^2 = 2 i

Taking square root both sides:-

\implies i + 1 = \sqrt{2}\times\sqrt{i}

\implies \sqrt{i} = \frac{i + 1}{\sqrt{2}}

Hope this helps you...............

_____________________________________________________________

Similar questions