Math, asked by monjyotiboro, 3 months ago

Find the square root of 2x+(x^2-1)i

Answers

Answered by mathdude500
4

Basic Identities Used :-

\boxed{ \sf \: {i}^{2} = 1}

\boxed{ \sf \: {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}

\boxed{ \sf \: {(x - y)}^{2} + 4xy =  {(x + y)}^{2}}

\large\underline{\bf{Solution-}}

\green{\sf \: Let \:  \sqrt{2x +  {(x}^{2} - 1)i }  = a + ib }-  - (1)

On squaring both sides, we get

\rm :\longmapsto\:2x +({x}^{2} - 1)i  =  {a}^{2} +  {i}^{2} {b}^{2} + 2abi

\rm :\longmapsto\:2x +({x}^{2} - 1)i  =  {a}^{2}  - {b}^{2} + 2abi

On comparing, we get

 \red{\rm :\longmapsto\: {a}^{2} -  {b}^{2} = 2x} -  -  - (2) \\  \red{\rm :\longmapsto\:2ab =  {x}^{2} - 1} -  -  - (3)

Now,

Consider,

\rm :\longmapsto\: {a}^{2}+{b}^{2} =  \sqrt{ {( {a}^{2} -  {b}^{2})}^{2} +  {(2ab)}^{2} }

\rm :\longmapsto\: {a}^{2}+{b}^{2} =  \sqrt{ {(2x)}^{2}  +  {( {x}^{2} - 1) }^{2} }

\rm :\longmapsto\: {a}^{2}+{b}^{2} =  \sqrt{ {4x}^{2}  +  {( {x}^{2} - 1) }^{2} }

\rm :\longmapsto\: {a}^{2}+{b}^{2} =  \sqrt{{( {x}^{2}  + 1) }^{2} }

 \red{\rm :\implies\:\: {a}^{2}+{b}^{2} =  {x}^{2}  + 1} -  -  - (4)

On adding equation (2) and equation (4), we get

 \red{\rm :\implies\:\: 2{a}^{2} =  {x}^{2}  + 1 + 2x}

 \red{\rm :\implies\:\: 2{a}^{2} =  {(x + 1)}^{2}}

 \red{\rm :\implies\:\: {a}^{2} =  \dfrac{{(x + 1)}^{2}}{2} }

 \red{\rm :\implies\:\: {a} =  \pm \:  \dfrac{{(x + 1)}}{ \sqrt{2}}}  -  -  - (5)

On Subtracting equation (2) from equation (4), we get

 \red{\rm :\implies\:\: 2{b}^{2} =  {x}^{2}  + 1  -  2x}

 \red{\rm :\implies\:\: 2{b}^{2} =  {(x  -  1)}^{2}}

 \red{\rm :\implies\:\: {b}^{2} =  \dfrac{{(x  -  1)}^{2}}{2} }

 \red{\rm :\implies\:\: {b} =  \pm \:  \dfrac{{(x  -  1)}}{ \sqrt{2}}}  -  -  - (6)

On substituting the values of a and b in equation (1), we get

\green{\sf \:\sqrt{2x+{(x}^{2}- 1)i} = \pm \:\bigg(\dfrac{{(x + 1)}}{\sqrt{2}}+ i\dfrac{{(x  -  1)}}{ \sqrt{2}} \bigg)}

Similar questions