Math, asked by mazumderanik2, 7 months ago

find the square root of
9 + 2  \sqrt{15}  + 2 \sqrt{5}  + 2 \sqrt{3}
solve it please

Answers

Answered by pulakmath007
11

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

(a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

QUESTION

TO DETERMINE

9 + 2 \sqrt{15} + 2 \sqrt{5} + 2 \sqrt{3}

CALCULATION

9 + 2 \sqrt{15} + 2 \sqrt{5} + 2 \sqrt{3}

 = 5 + 3 + 1 + 2 \sqrt{15} + 2 \sqrt{5} + 2 \sqrt{3}

 =  {( \sqrt{5}) }^{2}  +  {( \sqrt{3} )}^{2}   +  {1}^{2} + 2 \sqrt{5} \times  \sqrt{3}  + 2 \sqrt{5}  \times  \sqrt{1} + 2 \sqrt{3} \times  \sqrt{1}

 =  {( \sqrt{5}  +  \sqrt{3} + 1) }^{2}  \:  \:  \: using \:  \: the \: above \: identity

Hence

 \sqrt{9 + 2 \sqrt{15} + 2 \sqrt{5} + 2 \sqrt{3}}

 =  \sqrt{5}  +  \sqrt{3}  + 1

Similar questions