Math, asked by marshalhunters, 1 year ago

Find the square root of the complex number - 7-24i.​

Answers

Answered by Anonymous
63

Square root of complex numbers -

  +  - \sqrt{ \frac{ |z|  + re(z)}{2} }  -  i\sqrt{ \frac{ |z|  - re(z)}{2} }  \\

-7-24i = square root .

 |z|  =  \sqrt{ {re(z)}^{2}  +  {im(z)}^{2} }  \\

 |z|  =  \sqrt{7^{2}  +  {24}^{2} }  \\

|z| = 25 .

Now putting value in above mentioned formula .

 \sqrt{ \frac{25 + 7}{2} }  - i \sqrt{ \frac{25 - 24}{2} }  \\

 \sqrt{16}  - i \sqrt{ \frac{1}{2} } \\

4 - i \frac{1}{ \sqrt{2} }  \\

hence square root of-7-24i is

(+/-)(4-i(1/√2)

hope it helps.

Answered by Anonymous
2

ANSWER:-

let \sqrt{ - 7 - 24i}  = a + ib

 - 7 - 24i = (a + ib {)}^{2}  =  {a}^{2}  -  {b}^{2}  + 2iab

comparing \: coeffiecient \: we \: get

 {a}^{2}  -  {b}^{2}  =  - 7 \:  \: and \:  \: 2ab =  - 24

ab =  - 12

b =  \frac{ - 12}{a}

 {a}^{2}  -  \frac{144}{ {a}^{2} }  =  - 7

 {a}^{2}  + 7 {a}^{2}  - 144 = 0

 =  > ( {a}^{2}  - 9)( {a}^{2}  + 16) = 0

Hence,  {a}^{2}  + 16≠0 \:  \:  \: so, {a}^{2}  = 9

a = ±3

a =  \frac{ - 12}{a}  = ±4

for \: a = 3,b =  - 4

a =  - 3,b =  - 4

so, =  \sqrt{ - 7 - 24i}  = ±(3 - 4i)

HOPE IT'S HELPS YOU ❣️

Similar questions