Math, asked by pmon3449, 11 months ago

find the square root of the expression 4x^2/y^2+20x/y+13-30y/x+9^2/x^2​

Answers

Answered by MaheswariS
17

\underline{\textsf{Given:}}

\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}}

\underline{\textsf{To find:}}

\textsf{The square root of}

\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}}

\underline{\textsf{Solution:}}

\textsf{First we write the given expression as a perfect squre}

\mathsf{Consider,}

\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}}

\mathsf{This\,can\,be\,written\,as}

\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}=\left(\dfrac{2x}{y}+p-\dfrac{3y}{x}\right)^2}

\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}=\left(\dfrac{2x}{y}+p-\dfrac{3y}{x}\right)\left(\dfrac{2x}{y}+p-\dfrac{3y}{x}\right)}

\mathsf{Equating\;coefficient\;of\;\dfrac{x}{y}\;on\;bothsides\;we\;get}

\mathsf{20=2p+2p}

\mathsf{4p=20}

\mathsf{p=5}

\implies\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}=\left(\dfrac{2x}{y}+5-\dfrac{3y}{x}\right)^2}

\therefore\sqrt{\mathsf{\dfrac{4x^2}{y^2}+\dfrac{20x}{y}+13-\dfrac{30y}{x}+\dfrac{9y^2}{x^2}}}\mathsf{=\pm\left(\dfrac{2x}{y}+5-\dfrac{3y}{x}\right)}

\underline{\textsf{Find more:}}

Square root of polynomial m^4+6m^3+11m^2+6m+1

https://brainly.in/question/11769927

Similar questions