Math, asked by devansh9257, 6 days ago

Find the square root of the following complex number

7 + 24i

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

\rm \:  \sqrt{7 + 24i}  = x + iy -  -  -  - (1) \\

On squaring both sides, we get

\rm \: 7 + 24i =  {(x + iy)}^{2}  \\

\rm \: 7 + 24i =   {x}^{2} +  {i}^{2} {y}^{2}  + 2ixy    \\

\rm \: 7 + 24i =   {x}^{2}-{y}^{2}  + 2ixy \:  \:  \:  \{ \:  \because \:  {i}^{2} =  - 1 \}  \\

On comparing real and Imaginary parts, we get

\rm \:  {x}^{2} -  {y}^{2} = 7 -  -  - (2) \\

\rm \: 2xy = 24 -  -  - (3) \\

Now, we know that,

\rm \:  {x}^{2} +  {y}^{2} =  \sqrt{ {( {x}^{2}  -  {y}^{2} )}^{2} + {(2xy)}^{2} }  \\

On substituting the values from equation (2) and (3), we get

\rm \:  {x}^{2} +  {y}^{2} =  \sqrt{ {(7)}^{2} +  {(24)}^{2}  }  \\

\rm \:  {x}^{2} +  {y}^{2} =  \sqrt{49 + 576}  \\

\rm \:  {x}^{2} +  {y}^{2} =  \sqrt{625}  \\

\rm \:  {x}^{2} +  {y}^{2} =  25 -  -  - (4)  \\

On adding equation (2) and (4), we get

\rm \:  {2x}^{2} = 32 \\

\rm \:  {x}^{2} = 16 \\

\rm\implies \:x =  \:  \pm \: 4 \\

Now, On Subtracting equation (2) from (4), we get

\rm \:  {2y}^{2} = 18 \\

\rm \:  {y}^{2} = 9\\

\rm\implies \:y \:  =  \:  \pm \: 3 \\

Hence, the values of x and y are as follow :-

\rm \: As \: 2xy = 24 \\

\rm\implies \:xy > 0 \\

\rm\implies \:x > 0 \: and \: y > 0 \:  \:  \: or \:  \:  \: x < 0 \: and \: y < 0 \\

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 4 &amp; \sf 3 \\ \\ \sf  - 4 &amp; \sf  - 3 \end{array}} \\ \end{gathered} </p><p>

Hence,

\rm\implies \:\rm \:  \sqrt{7 + 24i} =  \:  \pm \: (4 + 3i) \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number &amp; \bf arg(z) \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf x + iy &amp; \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy &amp; \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy &amp; \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy &amp; \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions