Find the square root of (x+1)^6+1/(x+1 )^6+2
Answers
Answered by
7
Answer:
Toolbox:
(1+x)n=nC0+nC1x+nC2x2+....nC1Xr+....+nCnxn
(x+1)6=x6+6C1x5.1+6C2.x4.12+6C3.x3.13+6C4.x2.14+6C5.x.15+6C6.x4.16
⇒x6+6x5+15x4+20x3+15x2+6x+1
-----(1)
(x−1)6=x6+6C1x5.(−1)+6C2.x4.(−1)2+6C3.x3.(−1)3+6C4.x2.(−1)4+6C5.x.(−1)5+6C6.x0.(−1)6
⇒x6−6x5+15x4−20x3+15x2−6x+1
-----(2)
Adding (1) and (2)
(x+1)6+(x−1)6=2[x6+15x4+15x2+1]
Putting x=2–√
(2–√+1)6+(2–√−1)6=2[(2–√)6+15(2–√)4+15(2–√)2+1]
⇒2[8+60+30+1]
⇒2[99]
⇒198
Step-by-step explanation:
HOPE IT WILL HELP UH
Similar questions