Math, asked by vamshikrishna9688, 11 months ago

Find the square root of x^4-8x^3+mx^2+nx+16 and also find the value of m and n

Answers

Answered by knjroopa
13

Answer:

24 , 32

Step-by-step explanation:

Given  

Find the square root of x^4-8x^3+mx^2+nx+16 and also find the value of m and n

Now we need to find square root of the given expression  

So                    x^2 – 4x + (m – 16)/2

------------------------------------------------------------------

       x ^2                 x^4 – 8x^3 + mx^2 + nx + 16            

2x^2 – 4 x               x^4  

                     ----------------------------------------------------

                                       - 8x^3 + mx^2

                                       -8x^3 + 16x^4

                   --------------------------------------------------------------------------------------

2x^2 – 8 x + (m – 16)/2         (m – 16)x^2 + nx + 16

                                                (m – 16)x^2 – 4(m – 16)x + [m – 16/2]^2

Equating the constant term we get

             [(m – 16) / 2]^2 = 16

             (m – 16)/2 = 4

              m – 16 = 8

              m = 8 + 16

              m = 24

By equating coefficients of x we get

             n = - 4(m – 16)

           n = -4 (24 – 16)

         n = - 4 x 8

            n = - 32

So the values of m and n are 24 and - 32

Answered by john2168
0

Step-by-step explanation:

Answer is

m = 24

n= -32

I hope this will help you.

Attachments:
Similar questions