Math, asked by imranburud6299, 9 months ago

Find the square roots of a complex number (-7-24i)

Answers

Answered by krishgoel679
0

Convert complex number to polar no,s

−7−24i=25cos(−π+atan(247))+25isin(−π+atan(247))

According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ)) are given by r√n(cos(θ+2πkn)+isin(θ+2πkn)), k=0..n−1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

We have that r=25, θ=−π+atan(247), n=2.

Thus,

k=0: 25−−√2(cos((−π+atan(247))+2π⋅02)+isin((−π+atan(247))+2π⋅02))=5(cos(−π2+atan(247)2)+isin(−π2+atan(247)2))=5sin(atan(247)2)−5icos(atan(247)2)

k=1: 25−−√2(cos((−π+atan(247))+2π⋅12)+isin((−π+atan(247))+2π⋅12))=5(cos(atan(247)2+π2)+isin(atan(247)2+π2))=−5sin(atan(247)2)+5icos(atan(247)2)

ANSWER

−7−24i−−−−−−−√2=5sin(atan(247)2)−5icos(atan(247)2)≈3.0−4.0i

−7−24i−−−−−−−√2=−5sin(atan(247)2)+5icos(atan(247)2)≈−3.0+4.0i

I'm a new in these things only 3 days. Pls help me by making me brainliest

It will encourage me to answer more

Answered by Anonymous
1

ANSWER:-

let \sqrt{ - 7 - 24i}  = a + ib

 - 7 - 24i = (a + ib {)}^{2}  =  {a}^{2}  -  {b}^{2}  + 2iab

comparing \: coeffiecient \: we \: get

 {a}^{2}  -  {b}^{2}  =  - 7 \:  \: and \:  \: 2ab =  - 24

ab =  - 12

b =  \frac{ - 12}{a}

 {a}^{2}  -  \frac{144}{ {a}^{2} }  =  - 7

 {a}^{2}  + 7 {a}^{2}  - 144 = 0

 =  > ( {a}^{2}  - 9)( {a}^{2}  + 16) = 0

Hence,  {a}^{2}  + 16≠0 \:  \:  \: so, {a}^{2}  = 9

a = ±3

a =  \frac{ - 12}{a}  = ±4

for \: a = 3,b =  - 4

a =  - 3,b =  - 4

so, =  \sqrt{ - 7 - 24i}  = ±(3 - 4i)

HOPE IT'S HELPS YOU ❣️

Similar questions