Find the square roots of a complex number (-7-24i)
Answers
Convert complex number to polar no,s
−7−24i=25cos(−π+atan(247))+25isin(−π+atan(247))
According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ)) are given by r√n(cos(θ+2πkn)+isin(θ+2πkn)), k=0..n−1¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
We have that r=25, θ=−π+atan(247), n=2.
Thus,
k=0: 25−−√2(cos((−π+atan(247))+2π⋅02)+isin((−π+atan(247))+2π⋅02))=5(cos(−π2+atan(247)2)+isin(−π2+atan(247)2))=5sin(atan(247)2)−5icos(atan(247)2)
k=1: 25−−√2(cos((−π+atan(247))+2π⋅12)+isin((−π+atan(247))+2π⋅12))=5(cos(atan(247)2+π2)+isin(atan(247)2+π2))=−5sin(atan(247)2)+5icos(atan(247)2)
ANSWER
−7−24i−−−−−−−√2=5sin(atan(247)2)−5icos(atan(247)2)≈3.0−4.0i
−7−24i−−−−−−−√2=−5sin(atan(247)2)+5icos(atan(247)2)≈−3.0+4.0i
I'm a new in these things only 3 days. Pls help me by making me brainliest
It will encourage me to answer more
ANSWER:-
HOPE IT'S HELPS YOU ❣️