find the standard deviation and coefficient of variation for the following data
44, 55,56,60,63,70
Answers
Answered by
2
Solution :-
x (x - Arithmetic Mean)²
_____________________________________________________________
44 (44 - 58)² = 196
55 (55 - 58)² = 9
56 (56 - 58)² = 4
60 (60 - 58)² = 4
63 (63 - 58)² = 25
70 (70 - 58)² = 144
____________________________________________________________
∑x = 348 ∑(x - Arithmetic Mean)² = 382
____________________________________________________________
Arithmetic Mean = ∑x/N
⇒ 348/6
Arithmetic Mean = 58
Standard Deviation = √∑(x - Arithmetic Mean)²/N
⇒ √382/6
⇒ √63.66666666
Standard Deviation = 7.979 or 7.98 (Approximately)
Coefficient of Variation = (Standard Deviation × 100)/Arithmetic Mean
⇒ (7.98 × 100)/58
Coefficient of Variation = 13.7586 or 13.76 % (Approximately)
Answer.
x (x - Arithmetic Mean)²
_____________________________________________________________
44 (44 - 58)² = 196
55 (55 - 58)² = 9
56 (56 - 58)² = 4
60 (60 - 58)² = 4
63 (63 - 58)² = 25
70 (70 - 58)² = 144
____________________________________________________________
∑x = 348 ∑(x - Arithmetic Mean)² = 382
____________________________________________________________
Arithmetic Mean = ∑x/N
⇒ 348/6
Arithmetic Mean = 58
Standard Deviation = √∑(x - Arithmetic Mean)²/N
⇒ √382/6
⇒ √63.66666666
Standard Deviation = 7.979 or 7.98 (Approximately)
Coefficient of Variation = (Standard Deviation × 100)/Arithmetic Mean
⇒ (7.98 × 100)/58
Coefficient of Variation = 13.7586 or 13.76 % (Approximately)
Answer.
Similar questions