Math, asked by atulranjan962, 3 months ago

Find the stationary points of
f(x, y) = 5x2 + 10y2 + 12xy - 4x - 6y +1.​

Answers

Answered by moksha1006
1

Answer:

I don't have what you want take this as example

Attachments:
Answered by krishnaanandsynergy
1

Answer:

Here we will find the stationary points for the given function f(x, y) = 5x2 + 10y2 + 12xy - 4x - 6y +1

Stationary Point is (\frac{1}{7},\frac{3}{14}  )

Step-by-step explanation:

To find the stationary points we should do the following steps.

Step 1:first find f'(x). which means that differentiate the given equation based on x.

Step 2:next find f'(y). which means that differentiate the given equation based on y.

Step 3:equate f'(x)=0 and f'(y)=0 and solve the equations.

Step 4:then we can find the stationary points

Step 1:first find f'(x):

Differentiate the given equation based on x. That is,

           f'(x)=10x+12y-4

Step 2:next find f'(y):

Differentiate the given equation based on y. That is,

           f'(y)=20y+12x-6

Step 3:equate f'(x)=0 and f'(y)=0 and solve this two equations.

          f'(x)=0 ⇒    10x+12y-4=0. It can be written as,

                                       10x+12y=4

the above equation is divided by 2. So that,

                                           5x+6y=2   ----------(1)

          f'(y)=0 ⇒    20y+12x-6=0 .It can be written as,

                                       20y+12x=6 .interchange x,y terms

                                        12x+20y=6  

the above equation is divided by 2. So that,

                                          6x+10y=3  -----------(2)

equation(1) multiply with 6. It can be written as,

                                       30x+36y=12 -----------(3)

equation(2) multiply with 5. It can be written as,

                                       30x+50y=15 -----------(4)

Subtract equation(4) - equation(3)

                                                 14y=3

                                                    y=\frac{3}{14}

Apply the value of y in equation(1). Then we can get the value of x.

            equation(1) ⇒  5x+6(\frac{3}{14} )=2

                                      5x+3(\frac{3}{7} )=2

                                        5x+(\frac{9}{7} )=2

                                                  5x=2-(\frac{9}{7} )

                                                  5x=\frac{14-9}{7}

                                                  5x=\frac{5}{7}

                                                    x=\frac{5}{5*7}

                                                    x=\frac{1}{7}

Step 4:then we can find the stationary points

          Stationary Point is (\frac{1}{7},\frac{3}{14}  )

Similar questions