Math, asked by himanshuyadav226220, 1 month ago

Find the sum 0.39 +0.75 + 2.15 +(-1.001) and express in form of a rational number.​

Answers

Answered by tinkusweetymuvvala
0

Answer:

98.345

please mark me as brainliest

Answered by sorrySoSORRY
23

Answer:

Given:</p><p></p><p>0.39</p><p></p><p>We have, to find the decimal in the form of \dfrac{p}{q}qp .</p><p></p><p>Solution:</p><p></p><p>∴ 0.39</p><p></p><p>Multiplying and dividing by 100, we get</p><p></p><p>= \dfrac{0.39\times 100}{100}1000.39×100</p><p></p><p>= \dfrac{39}{100}10039 , in the form of \dfrac{p}{q}qp .</p><p></p><p>Given:</p><p></p><p>0.750</p><p></p><p>We have, to find the decimal in the form of \dfrac{p}{q}qp .</p><p></p><p>Solution:</p><p></p><p>∴ 0.750</p><p></p><p>Multiplying and dividing by 1000, we get</p><p></p><p>= \dfrac{0.750\times 1000}{1000}10000.750×1000</p><p></p><p>= \dfrac{750}{1000}1000750 or \dfrac{3}{4}43 , in the form of \dfrac{p}{q}qp .</p><p></p><p>Given:</p><p></p><p>0.215</p><p></p><p>We have, to find the decimal in the form of \dfrac{p}{q}qp .</p><p></p><p>Solution:</p><p></p><p>∴ 0.215</p><p></p><p>Multiplying and dividing by 1000, we get</p><p></p><p>= \dfrac{0.215\times 1000}{1000}10000.215×1000</p><p></p><p>= \dfrac{215}{1000}1000215 or \dfrac{43}{200}20043 , in the form of \dfrac{p}{q}qp .</p><p></p><p>Given:</p><p></p><p>0.7010</p><p></p><p>We have, to find the decimal in the form of \dfrac{p}{q}qp .</p><p></p><p>Solution:</p><p></p><p>∴ 0.7010</p><p></p><p>Multiplying and dividing by 10000, we get</p><p></p><p>= \dfrac{0.7010\times 10000}{10000}100000.7010×10000</p><p></p><p>= \dfrac{7010}{10000}100007010 or \dfrac{701}{1000}1000701 , in the form of \dfrac{p}{q}qp .</p><p></p><p>Given:</p><p></p><p>9.90</p><p></p><p>We have, to find the decimal in the form of \dfrac{p}{q}qp .</p><p></p><p>Solution:</p><p></p><p>∴ 9.90</p><p></p><p>Multiplying and dividing by 100, we get</p><p></p><p>= \dfrac{9.90\times 100}{100}1009.90×100</p><p></p><p>= \dfrac{990}{100}100990 or \dfrac{99}{10}1099 , in the form of \dfrac{p}{q}qp .</p><p></p><p>Given:</p><p></p><p>1.0001</p><p></p><p>We have, to find the decimal in the form of \dfrac{p}{q}qp .</p><p></p><p>Solution:</p><p></p><p>∴ 1.0001</p><p></p><p>Multiplying and dividing by 10000, we get</p><p></p><p>= \dfrac{1.0001\times 10000}{10000}100001.0001×10000</p><p></p><p>= \dfrac{10001}{10000}1000010001 , in the form of \dfrac{p}{q}qp .</p><p></p><p>∴The decimal in the form of \dfrac{p}{q}qp :</p><p></p><p>0.39 = \dfrac{39}{100}10039 ; 0.750 = \dfrac{750}{1000}1000750 or \dfrac{3}{4}43 ; 2.15 = \dfrac{215}{1000}1000215 or \dfrac{43}{200}20043 ;</p><p></p><p>7.010 = \dfrac{7010}{10000}100007010 or \dfrac{701}{1000}1000701 ; 9.90 = \dfrac{990}{100}100990 or \dfrac{99}{10}1099  and 1.0001 = \dfrac{10001}{10000}1000010001</p><p></p><p>

Similar questions