Math, asked by Harsh130602, 1 year ago

find the sum 1/1+√2 +1/√2+√3 + 1/√3+√4...... UPTO 99 terms

Answers

Answered by MaheswariS
72

Given:

\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+\sqrt4}+..........99\;terms

=\frac{1}{\sqrt1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+\sqrt4}+..........99\;terms

consider,

\frac{1}{\sqrt1+\sqrt2}

=\frac{1}{\sqrt2+1}{\times}\frac{\sqrt2-1}{\sqrt2-1}

=\frac{\sqrt2-1}{(\sqrt2)^2-1^2}

=\frac{\sqrt2-1}{2-1}

=\sqrt2-1

\implies\;t_1=\frac{1}{\sqrt1+\sqrt2}=\sqrt2-1

and

\frac{1}{\sqrt2+\sqrt3}

=\frac{1}{\sqrt3+\sqrt2}{\times}\frac{\sqrt3-\sqrt2}{\sqrt3-\sqrt2}

=\frac{\sqrt3-\sqrt2}{(\sqrt3)^2-(\sqrt2)^2}

=\frac{\sqrt3-\sqrt2}{3-2}

=\sqrt3-\sqrt2

\implies\;t_2=\frac{1}{\sqrt2+\sqrt3}=\sqrt3-\sqrt2

k th term of the series is

\bf\;t_k=\frac{1}{\sqrt{k}+\sqrt{k+1}}=\sqrt{k+1}-\sqrt{k}

Now,

\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+\sqrt4}+..........99\;terms

=(\sqrt{2}-\sqrt1)+(\sqrt{3}-\sqrt2)+(\sqrt{4}-\sqrt3)+...................+(\sqrt{99}-\sqrt{98})+(\sqrt{100}-\sqrt{99})

=-\sqrt1+\sqrt{100}

=-1+10

=9

\implies\boxed{\bf\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\frac{1}{\sqrt3+\sqrt4}+..........99\;terms=9}

Answered by mohan12377
18

Answer:

9.

pls mark me as brainliest.

follow me

Similar questions