Math, asked by sachin259, 8 months ago

Find the sum........​

Attachments:

Answers

Answered by shadowsabers03
4

We know that,

\displaystyle\longrightarrow1+2+3+\,\dots\,+n=\sum_{k=1}^nk=\dfrac{n(n+1)}{2}

\displaystyle\longrightarrow1^2+2^2+3^2+\,\dots\,+n^2=\sum_{k=1}^nk^2=\dfrac{n(n+1)(2n+1)}{6}

And these summation identities,

\displaystyle\longrightarrow\sum_{k=1}^n[a(k)+b(k)]=\sum_{k=1}^na(k)+\sum_{k=1}^nb(k)

\displaystyle\longrightarrow\sum_{k=1}^n[c\cdot f(k)]=c\cdot\sum_{k=1}^nf(k)

So,

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\sum_{k=1}^{20}\left(\dfrac{k(k+1)}{2}\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\sum_{k=1}^{20}\left(\dfrac{k^2+k}{2}\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\dfrac{1}{2}\sum_{k=1}^{20}\left(k^2+k\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\dfrac{1}{2}\left(\sum_{k=1}^{20}k^2+\sum_{k=1}^{20}k\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\dfrac{1}{2}\left(\dfrac{20(20+1)(2\times20+1)}{6}+\dfrac{20(20+1)}{2}\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\dfrac{1}{2}\left(\dfrac{20\times21\times41}{6}+\dfrac{20\times21}{2}\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\dfrac{1}{2}\times\dfrac{20\times21}{2}\left(\dfrac{41}{3}+1\right)

\displaystyle\longrightarrow\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=\dfrac{1}{2}\times\dfrac{20\times21}{2}\times\dfrac{44}{3}

\displaystyle\longrightarrow\underline{\underline{\sum_{k=1}^{20}(1+2+3+\,\dots\,+k)=1540}}

Hence C is the answer.

Answered by Anonymous
0

Answer:

pls mark it as brainliest answer plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz zzzzzzzzzzzzzzzzzzzz

Similar questions