Math, asked by ankita154, 1 year ago

find the sum 3 +11+19+......+803

Answers

Answered by vikram991
18

\huge{\bf{\underline{\purple{Solution :}}}}

Given,

  • In this question First term (a) = 3
  • Common difference (d ) = 11 - 3 = 8

To Find ,

  • The sum of 3 + 11 + 19 + ........ + 803 = ?

Solution,

We know that :

\boxed{\bold{\red{n^{th} \ term = a + (n - 1) d}}}

Here ,

  • a is the first term .
  • n is the number of terms .
  • d is the difference between two Consecutive terms .

⇒If 803 is nth term of given A.P then,

Therefore,

\implies \bold{a_{n} = a + (n - 1) d}

\bold{a_{n} = 803}

\implies \bold{a + (n-1) d = 803}

\implies \bold{ 3 + (n-1) 8 = 803}

\implies \bold{(n - 1) 8  = 803  -3}

\implies \bold{ n - 1 = \frac{800}{8}}

\implies \bold{ n - 1 = 100}

\implies \boxed{\bold{ n = 101}}

So, AP has 101 terms

\bf{\bol{\pink{Sum \ of \ n \ Terms}}}

We know that :

\implies \boxed{\bold{s_{n} = \frac{n}{2} [ 2a + ( n - 1)d]}}

\implies \bold{s_{100} = \frac{101}{2} [ 2 \times + ( 101  - 1)  \times 8]}

\implies \bold{s_{101} = \frac{101}{2} [ 6 + 800 ]}

\implies \bold{s_{101} = \frac{101 \times 806}{2}}

\implies \bold{101 \times 403}

\implies \boxed{\bold{\red{40703}}} ( Answer )

\rule{200}2

Answered by Saby123
7

 \tt{\red{Given \: - }}

  • a = 3

  • d = 11 - 3 = 8

We know that :

 </p><p>\tt{\boxed{\bold{\purple{n^{th} \ term = a + (n - 1) d}}}}

 \tt{\orange{\implies {\boxed{bold{a_{n} = a + (n - 1) d}}}}}

\implies \boxed{\red{s_{n} = \frac{n}{2} [ 2a + ( n - 1)d]}}

Hence

 {\tt{\green{ \therefore{a + (n-1) d = 803}}}}

Placing Values And Substituting :

 \implies \boxed{\bold{ n = 101}}

So, AP has 101 terms

 \implies \boxed{\bold{\red{S_{n}40703}}}........(A)

Similar questions