Math, asked by bhumkarpranav2678, 1 year ago

Find the sum 4+9+14+.......+199

Answers

Answered by mysticd
3

Answer:

 \red { 4+9+14+ \codt\cdot \cdot +199}\green {= 4060}

Step-by-step explanation:

 Given \: sequence \: 4,9,14,\cdot\cdot\cdot+199

 First \:term (a) = 4

 n^{th} \: term = a_{n} = 199\: (given)

 a_{2} - a_{1} = 9 - 4 = \pink {5}

 a_{3} - a_{2} = 14 - 9 = \pink {5}

 [tex] a_{2} - a_{1} =  a_{3} - a_{2} =  \pink {5}

 common \: difference (d) = \pink {5}

 Given \: sequence \: is \: an \: A.P

 n^{th} \: term = a_{n} = 199\: (given)

 \implies a + (n - 1)d = 199

\implies 4+(n-1)5 = 199

\implies (n-1)5 = 199-4

\implies (n-1)5 = 195

\implies n-1 = \frac{195}{5}

\implies n = 39 + 1

 \implies n = 40

 Now, 4+9+\cdot \:cdot \: cdot + 199\= Sum \: of \: 40 \: terms \\= S_{40}

 \boxed { \pink { S_{n} = \frac{n}{2}(a+a_{n})}

 \implies S_{40} = \frac{40}{2} (4+199)

 = 20 \times 203

\green {= 4060}

Therefore.,

 \red { 4+9+14+ \codt\cdot \cdot +199}\green {= 4060}

•••♪

Similar questions