Math, asked by Parosita24, 5 months ago

Find the sum : -7/5 + 2/3​

Answers

Answered by ltzSnowgirl
7

GIVEN :-

-7/5 + 2/3

To FIND :-

Sum of given value : -7/5 + 2/3

SOLUTION :-

Lcm of 5 and 3 = (5 x 3) = 15.

 \therefore\sf{  \frac{ - 7}{5}  +  \frac{2}{3} } \:  =  \frac{3 \times ( - 7) + 5 \times 2}{15}  =  \frac{ - 21  + 10}{15}  =   \frac{ - 11}{5}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf</strong><strong>\</strong><strong>p</strong><strong>i</strong><strong>n</strong><strong>k</strong><strong>{</strong><strong> </strong><strong>(</strong><strong>i</strong><strong>)</strong><strong> </strong><strong>E</strong><strong>x</strong><strong>i</strong><strong>s</strong><strong>t</strong><strong>e</strong><strong>n</strong><strong>c</strong><strong>e</strong><strong> </strong><strong> \:</strong><strong>o</strong><strong>f</strong><strong> </strong><strong> \:</strong><strong>A</strong><strong>d</strong><strong>d</strong><strong>i</strong><strong>t</strong><strong>i</strong><strong>v</strong><strong>e</strong><strong> </strong><strong> \:</strong><strong>I</strong><strong>n</strong><strong>v</strong><strong>e</strong><strong>r</strong><strong>s</strong><strong>e</strong><strong>}</strong><strong> </strong><strong>

For every rotational number a/b , there exists number -a/b

 \sf Such \:  that, (\frac{ \alpha }{b}  +  \frac{- \alpha }{b}  ) =  \frac{ \alpha + ( -  \alpha ) }{b}  =   \frac{0}{b}  = 0 \\  \sf \:And \:  similarily, \: ( \frac{ -  \alpha }{b}  +  \frac{ \alpha }{b} ) = 0 \\  \sf Thus,( \frac{ \alpha }{b}  +  \frac{ -  \alpha }{b} ) = (   \frac{ -  \alpha }{b}  +  \frac{ \alpha }{b} )</strong><strong>\\</strong></p><p><strong>\pink \star  \sf \frac{ -  \alpha }{b}   \: is  \: called \:  the  \: additive \:  inversw \:  of  \:  \frac{ \alpha }{b} .

Similar questions